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Abstract

Explaining the emergence of altruistic cooperation is a very important matter. By knowing how co-
operation emerges we can create better environments for it to develop and be maintained. Altruistic
cooperation may seem counterproductive for the individual but it is widespread in the animal world.
While cooperation is traditionally studied in a two-person interaction - framed in the well-known Prison-
ers Dilemma - there are several examples of cooperative behavior in the form of collective dilemmas:
from group hunting, communal activities in human settlements to agreements between countries to pro-
mote ecological sustainability. Most of these scenarios can be formulated in terms of a public goods
game (PGG), which is the main focus of this thesis. Evolutionary Game Theory (EGT) provides a way
for us to study the complex interactions within a population, assuming that individuals adapt through
social learning. There has been a lot of research effort under EGT trying to explain how cooperation
can beat selfish behavior in the real world. Notwithstanding, the effects of individual-based learning on
cooperation under a PGG have not received much attention. Will cooperation emerge in a population
where agents are trying to learn which behavior leads to the best possible outcome, based on their own
experience? This is the question that propelled this work. We shed some light on how selfish and ratio-
nal agents behave when given the choice to incur a cost to themselves to produce a benefit for another.
As conflicting as these ideas may seem, it was shown that selfish agents can still choose to cooperate,
under certain circumstances.

Keywords: Cooperation, Public Goods Games, Evolutionary Game Theory, Reinforcement Learning,
Q-learning, Social Learning, Social Dilemma
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Resumo

Entender a emergência do comportamento altruı́sta nas populações é fundamental para compreender
a própria natureza humana e indispensável na criação de ambientes que favoreçam a cooperação entre
indivı́duos. Embora a cooperação altruı́sta pareça inviável para o indivı́duo, esta encontra-se ampla-
mente espalhada pelo mundo animal. Existem vários exemplos disto: deste caçadas em grupo, ativida-
des comunitárias e os acordos entre paı́ses para promover sustentabilidade ecológica. Muitos destes
cenários podem ser formulados como um jogo de bens públicos, que é o principal foco desta tese. A Te-
oria de Jogos Evolutiva é uma ferramenta poderosa para estudar as interações complexas que existem
numa população, assumindo que os indivı́duos se adaptam através de aprendizagem social. Vários
trabalhos recorrem, com sucesso, à Teoria de Jogos Evolutiva para explicar que mecanismos permitem
que a cooperação consiga vencer o comportamento egoı́sta no mundo real. No entanto, permanece
inexplorada a possibilidade da cooperação emergir num cenário em os agentes aprendem recorrendo
apenas à sua experiência individual. Será a cooperação capaz de emergir por aprendizagem individual?
Esta é a questão que motivou este trabalho. Com este trabalho conseguimos compreender um pouco
melhor como é que indivı́duos egoı́stas e racionais se comportam quando apresentados com a hipótese
de sofrerem um custo para darem um benefı́cio a outro. Apesar destas ideias parecem contraditórias,
neste trabalho é mostrado que estes agentes egoı́stas escolhem cooperar, em certas circunstâncias.

Palavras-chave: Cooperação, Jogos de bens Públicos, Teoria de Jogos Evolutiva, Aprendizagem por
Reforço, Q-learning, Aprendizagem Social, Dilema Social
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Chapter 1

Introduction

Explaining the emergence of altruistic cooperation is not an easy task. Altruistic cooperation happens
when an individual is willing to pay a cost for another to receive a benefit [1]. This way, altruistic coop-
eration (henceforth solely designated as cooperation) may appear to be irrational. Notwithstanding, co-
operative behavior can be observed throughout many animal species. Lions, chimpanzees and African
wild dogs cooperate in group hunts [2, 3, 4], some birds risk their lives to alert others that predators are
near [5]. Human populations provide the best examples of such behavior: from communal activities in
small villages [6] to international relations [7] and macroeconomic behavior [8], cooperation exists and
understanding it is a challenging endeavor. It also happens at different levels of organization: some
authors argue that cooperation was even in the origin of multicellular organisms [9].

Cooperation seems to go against Darwin’s principle of selection of the fittest. Selection of the fittest
might have led us to believe that evolution is nothing but competition. Why would an individual risk its
survival to provide a benefit to another? The duality that these concepts (evolution and cooperation)
appear to have, impelled a lot of research effort, trying to understand the emergence of cooperation and
why it creates better individuals and better societies. In this thesis the emergence and sustainability of
cooperation will be analyzed in a Public Goods Game (PGG), where cooperation is at stake in groups
of self-regarding individuals. The behavioral dynamics emerging in populations of interacting individuals
will also be studied. These interactions will be defined by means of game theoretical models which
represent the bare bones of the dilemmas being addressed. Different paradigms of strategy revision will
be analyzed, from social learning and evolution, to individual based learning and reinforcement learning,
with a special focus on the latter. In the following section, we provide a brief introduction to game the-
ory, evolutionary game theory, and reinforcement learning in the context of cooperation studies. These
sections will be followed by the results of the learning dynamics emerging from collective dilemmas with
non-linear returns, which will be the main contribution of this thesis.

1.1 Game Theory

In a nutshell, game theory represents the mathematics of conflicts of interest. This framework was first
proposed by von Neumann and Morgenstern [10]. Its purpose is to study the strategic decisions and
outcomes of rational agents when interacting with each other. Some years later, John Nash introduced
the concept of Nash Equilibrium [11], which proved to be an useful solution concept for non-cooperative
games. A Nash Equilibrium occurs when no player can gain anything from changing its strategy, assum-
ing other players remain constant in their strategies. This can be used as a way to predict the outcome
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Cooperate Defect
Cooperate benefit− cost −cost

Defect benefit 0

Table 1.1: Payoffs of Prisoner’s Dilemma for the row player.

of social interactions. A type of games one can study are Donation Games [12]. In this game, an agent
decides to give a benefit to other, incurring in a cost to himself. If this game is played by two agents
we are in presence of Prisoner’s Dilemma, one of the most famous example of conflict in Game Theory.
The payoffs earned by one player are summarized in Table 1.
In this type of games the best possible outcome for one agent is for him to defect while the other agent
cooperates. This way he gets the benefit without the loss of the cost. Also, an agent that defects will
have no incentive to change his behavior. Changing his behavior will always result in a worse payoff,
regardless of what the other agent plays. Because of this, defection is the only Nash Equilibrium of this
game. This means that a game played by rational and selfish agents will end with both defecting, leading
to a situation where both agents get 0 payoff. Individually an agent might think that defection is the best
choice. However, for both agents cooperation is the choice that maximizes their payoffs. Because of
this contradiction we are in presence of a social dilemma [13], where cooperation seems irrational but
leads to the best outcome for the population as a whole.

While 2-person games enclose a lot of real-world encounters, there is a lot of evidence of coopera-
tion occurring in multiplayer interactions. These games are called N-Person Games. The most common
N-Person Game consists in a generalization of Prisoner’s dilemma, with more than two persons. This is
called N-Person Prisoner’s Dilemma, but mostly known as Public Goods Game (PGG). In this game,
each individual can contribute a quantity to a pile. That pile is then multiplied by a factor and distributed
evenly by all the players. Cooperation means contributing to the pile and defection is just to receive the
division of the pile, without contributing. This defective behavior is known as free riding. Again, rational
players facing this dilemma will try to free ride, because defectors always get a higher payoff in mixed
groups. However, this reasoning ignores the collective (population-wide) dynamics, where a continuous
process of behavioral revision takes place [14]. We can model this process using Evolutionary Game
Theory where the agents payoffs are used to change their behaviors.

1.2 Evolutionary Game Theory

Some time after the development of classical game theory, biologists realized the potential of game
theory as a framework to formally study adaptation and coevolution of biological populations. If we as-
sociate payoffs with fitness in the models described previously, the idea of Game Theory can be used to
understand evolution and animal behavior. Agents with more payoff will be considered more fit and so,
will be able to reproduce often. Reproduction can be understood, not only in terms of generating new
agents, but also in reproducing ideas and making other agents willing to imitate one’s behavior [15]. In
general, an evolutionary model reflects the workings of three mechanisms: selection, replication, and
mutation [16]. Selection is a discriminating force that favors some specific agents rather than others.
Replication ensures that the properties of the agents in the system (or the agents themselves) are pre-
served, replicated, or inherited from one generation to the next, at least to some extent. In general, the
workings of selection and replication tend to reduce the diversity of the system. By contrast, mutation is
a mechanism that tries to preserve the heterogeneous nature of the population by making new agents
or new patterns of behavior appear. The key insight of Evolutionary Game Theory (EGT) is that many
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behaviors involve the interaction of multiple agents in a population. EGT focuses more on the dynamics
of strategy change and on the frequency with which those various competing strategies are found in the
population [17]. Therefore, unlike Game Theory, the fitness of an individual agent can not be measured
in isolation; rather it has to be evaluated in the context of the full population in which it lives. Now, the
goal is not to predict how agents will behave when interacting with each other, but rather how the behav-
ior of agents will change during evolution. As such, for EGT to be of use we will no longer have a pair
(or short group) of agents, but a population of them interacting successively.

Before proceeding with the study of evolution in large populations, some notation needs to be intro-
duced. e = (e1...en) is the set of possible strategies to use. The vector x = (x1...xn) represents the
fraction of the population using the respective strategy: xi is the fraction of the population using the pure
strategy ei. Now the concern is to determine the evolution of vector x , measuring the changes on the
fraction of the population playing each strategy. This evolution can occur in populations with infinite or
finite size. The main difference is that when dealing with finite populations we need to take into account
stochastic effects.

1.3 Evolution in infinite well-mixed Populations

Darwinism, in short, explains evolution as a process where the best individuals are selected for repro-
duction more often than others. EGT is able to represent frequency-dependent evolutionary processes,
typical of natural selection, but also of cultural evolution, which occurs at faster time-scales. Cultural
evolution is often based on social learning (see section 2.2), which mathematically is equivalent to a
common evolutionary process: instead of reproduction of the fittest, traits that offer higher payoffs are
imitated more frequently.

This imitation process will affect the fraction of agents using each different strategy. This change in
the state of the population can be modeled using a replicator equation. This equation captures the
essence of selection: it states that the fraction of population using a pure strategy will increase (or de-
crease) proportionally to the impact of that strategy in the adaptivity it provides. A strategy that gives an
individual some advantage (compared with the remaining population), will spread. One can also think
of the replicator equation as the derivative of x over time, tracing the time evolution of the use of pure
strategies:

ẋi = xi[(Ax)i − x ·Ax] (1.1)

A defines the payoffs of the games. It represents a n× n matrix, where n is the total number of different
strategies. A can contain any number of different strategies. If there are only two strategies (n = 2), such
as C and D (standing respectively for Cooperation and Defection), the previous system of differential
equations becomes equivalent to:

ẋ = x(1− x)(fC − fD) (1.2)

where x is the fraction of cooperators (and thus, (1 − x) is the fraction of defectors), fC is the fitness
of cooperators and fD is the fitness of defectors. According to the replicator equation, the fraction of
Cs (Ds) will increase in the population whenever ẋ > 0 ( ẋ < 0). The replicator equations present a
deterministic behavior. Both only have one possible solution, depending on the the frequency of each
strategy presented initially in the population. Also, this occurs considering infinitely large well-mixed
populations (where all agents may interact with each other freely). When dealing with finite populations
we must take into account stochastic effects that may play a sizable role. This is presented next.
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1.4 Evolution in finite populations with stochastic effects

Using analytical methods one can study the replicator equation to describe, deterministically, the dy-
namics of infinite populations. However, sometimes it is not possible to use such methods. This is the
case with the question we are trying to answer (see section 1.6): learning has no easy way to be studied
analytically. For this reason, we must rely on computer simulations of a multi-agent system. The evolu-
tionary dynamics in large, finite populations was pioneered in economics by Young [18] and by Kandori
et al. [19]. These simulations attempt to model populations in a more realistic manner as they deal with
finite populations. Indeed, the number of individuals in a society can be large but not infinite. However,
by dealing with finite populations we are forced to introduce stochastic effects. In finite populations, it
is important to consider the probability of one single agent changing from one strategy to another. To
achieve this purpose, we can implement a pairwise comparison rule. Usually, the Fermi function is used
as a pairwise comparison rule, as studied by Traulsen, Nowak and Pacheco [20]. Two individuals from
the population, A and B are randomly selected for update. The strategy of A will replace that of B with a
probability given by the Fermi function:

pr =
1

1 + e−β(fA−fB)
(1.3)

The reverse will happen with probability 1− pr. In short, this rule determines the probability (pr) of one
agent changing his strategy, after observing another and knowing his fitness. Note that when using this
update rule, imitation will occur with probability proportional to the difference between the fitness of both
individuals (fA − fB). The parameter β controls the intensity of selection. If this value is 0, imitation will
occur randomly and with probability equal to 0.5. If β is very large, imitation will strongly depend on the
difference between payoffs.

It is worth mentioning that there are other models which are not built upon the assumption that agents
respond optimally. These models rather attempt to describe how humans actually play games; which
sometimes does not seem to be very rational. These models are inspired by empirical evidence and
by research in cognitive science. Behavioral Game Theory (BGT) studies this type of learning models.
“BGT is about what players actually do. It expands analytical theory by adding emotion, mistakes, limited
foresight, doubts about how smart others are, and learning to analytical game theory” [21]. Models in
BGT are assessed according to how well they fit empirical data. This will not, however, be the focus of
this thesis.

1.5 Reinforcement Learning

When an agent repeatedly ends up and takes actions in the same situation, he can rely on his experience
to choose or avoid certain actions based on their immediate consequences. Actions that led to better
outcomes in the past tend to be repeated in the future, whereas choices that led to unsatisfactory
experiences are avoided [22]. Reinforcement learning has been successfully applied in many different
areas of research. From attempts to optimize elevator performance [23], to robots learning to walk by
themselves [24], to even helicopters learning to fly upside-down [25]. Some authors even draw parallels
between reinforcement learning and the way humans learn [26]. With these examples it is clear to see
that reinforcement learning is a powerful tool, and that it can be applied in many different scenarios.
However, reinforcement learning has yet not been applied to study the behavioral dynamics of a Public
Goods Game, and this will be the main contribution of this work.

4



1.6 Problem

Given the abundance of competition and the way cooperation seems counterproductive for the individ-
ual, the main problem is to understand why cooperation is so widespread in the animal kingdom and in
our own societies. Will cooperation emerge in a population where agents are trying to learn which
behavior leads to the best possible outcome, based on their own experience? This is the main
question we aim to answer. This work will focus on explaining how individual learning can influence
the emergence of cooperation. Will the effect of individual learning be similar to that of social learning,
traditionally studied under the framework of EGT? Specifically, we will focus on computational simula-
tions of large populations, consisting of agents using reinforcement learning playing a Public Goods
Game (PGG). We will focus on simulations because it is not clear how one can study the population
dynamics analytically for Individual Learning. The branch of individual learning used will be reinforce-
ment learning because the agents do not need to know the strategic nature of the game nor what other
players are thinking. This makes them suitable and easy to implement for all types of games. Also, the
agents’ desires are easy to model: they simply want to obtain the highest possible payoff. This way we
can observe if cooperation will emerge even when agents are behaving like selfish, rational individuals.
PGGs provide a good model for some interactions present in the real world. This type of games have a
linear return, meaning that the more cooperators a group has, the better that group fares off. However,
some situations in the real world are not as simple as this. Consider the way lionesses hunt in groups [2].
Two individuals are not enough for the cooperative hunt to be successful. At least three individuals are
required for the group to catch prey and then the more individuals added, the more successful the group
can be. To model a situation like this we need non-linear returns. This can be done by introducing a
threshold to the PGG, below which no public good is produced. Only when the number of cooperators
surpasses this threshold does the group produce any benefit. The previous example of lionesses hunt-
ing in groups could be modeled as a PGG with a threshold of three.

This is a very important problem. The solutions may have an informative and orienting purpose. In-
formative as they may help explain why or how cooperation emerged in the course of animal evolution.
Orienting because by knowing how cooperation emerges we can create better environments for it to
develop and be maintained when needed. Global warming has been described as one of the greatest
public goods dilemmas that humans face. Knowing which factors help the emergence of cooperation
could help the cooperative agreements between countries to promote ecological sustainability [14, 27].
This knowledge can also help define policies that help the management of commons, surpassing the
Tragedy of the Commons posed by Hardin [28].

1.7 Dissertation Outline

In this chapter we introduced the scope of this thesis and presented the problem we will face in the
following chapters. In chapter 2 we further present the work that has already been done in related fields
along with some background theory. These notions will be useful to understand the model we propose in
chapter 3. To understand how the population we modeled chose to behave, we can analyze the results
present in chapter 4. In the final chapter of this work, we summarize our efforts and provide some
insights about what could be done to further enhance our solution.
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Chapter 2

Related Work

Computer simulations of artificial societies helped enlarge the concept of traditional Game Theory. A
lot of work about the mechanisms by which cooperation is able to emerge in those artificial societies
was already made. The general concept between these simulations is similar. First the payoff matrix
is created. This matrix has the information of what payoff is earned by an agent after each interaction
with another agent. Then, the imitation rules are specified. This is where evolution takes place, as
agents mimic the behavior of other agents who have more fitness. In this section, a small overview
of the work made in the field of EGT is presented. Specific mechanisms were introduced by means
of abstract models, to promote the level of cooperation between agents. First we will present a set of
mechanisms that promote cooperation in populations where individuals are playing Prisoner’s Dilemma,
the most common game to study cooperation. Here the game is played between two agents, although
with Social Learning (see section 2.2) this game is modeled using a whole group of agents interacting
at the same time (a Public Goods Game (PGG)).

2.1 Mechanisms that favor cooperation

A lot of research effort has already been made, trying to find mechanisms that help cooperation beat
defection in the struggle to be a stable strategy. Nowak summarizes five of these mechanisms that
encourage individuals to cooperate [1]. They are kin selection, direct reciprocity, indirect reciprocity,
structured populations and group selection. Each of this mechanisms is presented with more detail next:

Kin Selection: Kin Selection may be defined as the cooperation between relatives. J.B.S Haldane
once stated ‘‘I will jump into the river to save two brothers or eight cousins”. This remark anticipated
what later became known as Hamilton’s rule [29]. Relatedness is defined as the probability of sharing
a gene. It can be assumed that the purpose of one individual is the safeguard and propagation of his
genes. In this case, by helping a related individual the payoff of the relate will contribute to the payoff of
the individual, proportionally to their relatedness. Hamilton’s rule [29] states that the coefficient of relat-
edness between two individuals must exceed the cost/benefit ratio for cooperation to occur. Although
this explanation is convincing it is also insufficient. Cooperation not only happens between related indi-
viduals. Individuals could interact repeatedly with each other. What would be the impact of that repetition
in altruism?

Direct Reciprocity: An agent might interact with another agent more than once. If this repeated in-
teraction occurs, one might remember the behavior of the other and take that into account in future
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decisions. Probably one will cooperate if the other agent also cooperated before. Trivers was pioneer
in the study of reciprocity as the basis for cooperation [5]. In his research he observed examples of co-
operation among animals that kin selection (introduced in the previous section) was not able to explain.
This led Trivers to propose Direct Reciprocity as another mechanism to explain cooperation.
Although with the introduction of direct reciprocity we are able to explain why cooperation emerges in
more situations, it is still not enough. It is not unusual to observe cooperation even if an agent never
played before with some other agent. Or, for example, we might notice an agent cooperating with an
entity that will not directly payback the cooperator, as is the case in donations to charity institutions.
Indirect Reciprocity is another mechanism which aims to explain why cooperation emerges in this type
of situations.

Indirect Reciprocity: As Martin A. Nowak stated: “direct reciprocity is like a barter economy based on
the immediate exchange of goods, whereas indirect reciprocity resembles the invention of money” [1].
Instead of only helping others who can help us, indirect reciprocity is about helping those who can not
help us back. Helping someone establishes a good reputation, which we hope will bring us future ben-
efits. Nowak and Sigmund [30] proposed a model using EGT where all the agents in a population have
an image score visible to all other agents. In that model two agents are randomly chosen, one being the
potential donor of some altruistic act and the other being the recipient. If the donor chooses to cooperate
he incurs a cost to himself while the recipient receives a benefit greater than that cost. Doing this in-
creases the image score of the donor; conversely, if the donor chooses not to cooperate his image score
is decreased. This way, agents that help others can be rewarded while those who do not are punished.
It is shown that if the strategy used by one agent takes into account the other’s image score, cooperation
dominates the population. In all the mechanisms presented so far, all agents can meet freely, with equal
probability. This is unrealistic. What if the population is structured?

Structured Populations: So far, all mechanisms presented use well-mixed populations where ev-
erybody interacts equally likely with everybody else. However, real populations are highly structured.
Spatial structures or social networks make some individuals interact more often than others. To study
if the emergence of cooperation is affected by the structure of the population one can use evolutionary
graph theory [31]. The vertices of the graph represent the individuals of the population. The edges
determine who interacts with whom. A cooperator pays a cost for each neighbor to receive a benefit,
whereas defectors pay no cost but their neighbors receive no benefits. This way, cooperators can prevail
by forming network clusters, where they help each other. The resulting “network reciprocity” is a gen-
eralization of “spatial reciprocity”, initially proposed by Nowak and May [32]. In this study, the players
were organized in a square lattice and each one of them was only able to interact with adjacent neigh-
bors. The Prisoner’s Dilemma was then played as done traditionally, without any other mechanisms to
promote cooperation. After each round, the payoff of each agent was the sum of the payoffs earned
during plays with the adjacent agents. Each agent then imitates the behavior of the neighbor that had
the best payoff. The dynamics of this game are simple and deterministic. However the result was the
emergence of chaotic patterns, showing the non-predictable conversion between cooperative and defec-
tive agents. This led the authors to conclude that spatial structure seems to be crucial to the emergence
of cooperation. However, saying that each person connects with an exact number of neighbors is an
over-simplistic assumption. Recent advances in network theory [33, 34], show us that populations are
organized in complex interaction structures, ranging from random-like graphs to scale-free networks.
Scale-free graphs, studied by Barabasi, Albert and Jong [34], are of particular interest due to the fact
that their degree distribution follows a power law. This means that some vertices of the graph are highly
connected (often called “hubs”) while the vast majority of the vertices only have a small number of con-
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nections. Later, Santos, Rodrigues and Pacheco [35] developed a model where Prisoner’s Dilemma was
played in a scale-free network, and it was concluded that cooperators can take advantage of this kind of
structure, being cooperation the strategy that dominated the population.

Group Selection: What if we think not only about the individuals but also about the groups they take
part in? A group of cooperators might be more successful than a group of defectors. A study done by
Traulsen and Nowak [36] tackled this question. In this study, the population was divided into groups.
Cooperators help others in their own group while defectors do not help. Individuals reproduce with a
probability directly proportional to their payoff and their offspring are added to the same group. When
the size of a group reaches a threshold, the group will split in two groups. In this case, another group
becomes extinct to constrain the total population size. Although only individuals reproduce, selection
emerges on two levels. On the lower level (within groups) selection favors defectors, while on the higher
level (between groups) selection favors cooperation. The authors concluded that if the benefit/cost ratio
is sufficient, cooperation will spread.

2.2 Social Learning

Social learning happens when an individual imitates the behavior of another, as explained in more detail
in section 1.2. This imitation process is equivalent to what we usually understand as evolution. We can
view evolution not only as reproducing new agents, but also as reproducing ideas and making other
agents willing to imitate one’s behavior. This spreading of behavior is usually how evolution is modeled
using EGT. There has been a lot of research effort to explain the emergence of cooperation on Public
Goods Games using social learning. As said on section 1.1, in a PGG each individual can contribute a
quantity to a pile. That pile is then multiplied by an enhancement factor and distributed evenly by all the
players in the group.

Public Goods Game: Pacheco et al. [37] showed that if that enhancement factor is greater than the
group size cooperation emerges. Conversely, whenever the enhancement factor is smaller than the
group size cooperators stand no evolutionary chance. Then, they introduced a threshold for partici-
pants, below which no public good is produced. This means that if the number of individuals cooperating
in a group is smaller than the threshold, that group produces no goods at all. This changes the game
from the traditional PGG to a N-Person Stag Hunt game. In this game the dynamics of the population
are more complex than what was seen with the PGG. The introduction of this threshold, in most situa-
tions, allowed for the emergence of cooperation even when the enhancement factor was smaller than
the group size. They also showed the importance of the relation between group size and population size.
Only for group sizes much smaller than the population size can cooperation emerge. If the population
is small or the group size spans nearly the entire population there can be observed a “spite” effect, first
noted by Hamilton [38], which is detrimental for cooperation.

N-Person Snowdrift Game: On another study Souza, Pacheco and Santos [39] studied the popula-
tion dynamics of another game: the N-Person Snowdrift. In this game there also exists a threshold
below which no public good is produced. If this threshold is reached, a benefit is produced. Unlike
the PGG, the benefit shared by individuals is always the same: it does not depend on the number of
cooperators. Also unlike the PGG, the cost is divided by all contributors. If there are more agents will-
ing to cooperate each of them has to pay less to produce the benefit. Similarly to the aforementioned
study , Souza, Pacheco and Santos concluded that to provide the best conditions for the emergence

9



of cooperation in the snowdrift game, the group size should be much smaller than the population size.
The introduction of a threshold similar to the one employed by Pacheco et al. [37] also provided similar
results. The population dynamics are more complex and under certain conditions this threshold provides
an incentive to cooperate.

Structured populations: Similarly to what was previously said about Structured Populations (see sec-
tion 2.1), F. Santos, M. Santos and Pacheco [40] concluded that cooperation in Public Goods Games
may emerge as an outcome of social diversity. In this study, the agents are organized in a scale-free
network (see section 2.1) and play only with direct neighbors. The social diversity mentioned comes as a
result of the difference of connections between the hubs and the other vertices, which have a far smaller
degree of connectivity. This diversity in connectivity greatly helped the emergence of cooperation. This
effect was already visible when each cooperator gave a fixed cost per each group he participated. But
when each cooperator gave a fixed cost per individual (each cooperator contributes a cost equally di-
vided between all groups he participates) this effect was amplified and the fraction of cooperators on the
population was significantly higher. This means that social diversity is not the only important factor for
the emergence of cooperation. The way each individual decides what amount to contribute also plays a
big role.

Risk: The perception of risk can also play a role on the emergence of cooperation. Sometimes cer-
tain goals are shadowed by the uncertainty of its achievement. There are many examples of these types
of uncertainties throughout human history [41, 42] from group hunting [43, 8], to voluntary adoption of
public health measures [44] and prospective choices [45, 46]. Hence, it is safe to say that investments or
efforts targeting the mitigation of future losses will depend on how likely such losses seem to be. Milinski
et al. [27] illustrated this in actual experiments making use of a repeated game in which the perception
of risk was shown to be a great factor when dealing, in that case, with the problem of climate change.
Santos and Pacheco [14] modeled a similar problem using evolutionary game theory. The agents played
a game similar to a PGG with threshold. The agents had an initial endowment. Cooperators contribute
a fraction of their endowment, whereas Defectors do not. This time, however, if the group did not reach
the threshold all agents would lose their remaining endowments according to a certain probability (the
risk). Santos and Pacheco [14] arrived at a similar conclusion as Milinski et al [27]: decisions under high
risk significantly raise the chances of coordinating actions to achieve a common goal.

2.3 Individual Learning

With Individual Learning (IL) agents can learn over time about the game or about the behaviors of oth-
ers. In contrast with EGT, players use the history of the game to decide what action to take next. Some
of the models that have been used for learning in game theory include reinforcement learning, myopic
response, fictitious play, and rational learning [47]. These models are presented in ascending order of
sophistication according to the amount of information agents use and their computational capabilities.

Reinforcement learning: When an agent repeatedly ends up and takes actions in the same situa-
tion, he can rely on his experience to choose or avoid certain actions based on their immediate con-
sequences. This is the notion behind reinforcement learning [22]. Reinforcement learners only use the
immediately received payoff to adjust the probability of conducting the same action accordingly. Actions
that led to better outcomes in the past tend to be repeated in the future, whereas choices that led to
unsatisfactory experiences are avoided. This way, reinforcement learners are unaware of the strategic
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nature of the game. Reinforcement learning can be implemented in different ways, for example, by using
Roth-Erev learning [22] or Q-learning [48, 49]. The latter being the focus of this work. A more detailed
explanation of reinforcement learning is provided on section 3.5.

Myopic Response: For this family of learning models, the agents need to have complete informa-
tion about the game being played. This means that each player knows the payoff that he will receive
in each possible outcome of the game. They also need to know the actions that every other player
selected in the immediate past. Agents have a static and deterministic perception of the environment.
This means that when an agent makes his next decision he assumes that every other agent will keep
his current action unchanged; and that an agent can predict what future state he will be in by taking into
account its current state and all actions taken by other agents. Working under such assumption, each
agent can identify the set of strategies that would lead to an improvement of his current payoff. Because
in this model agents assume their environment is static and deterministic, it is said that they respond in
a myopic fashion: they ignore the implications of current choices on future choices and payoffs.

Fictitious Play: As with Myopic Response, players in Fictitious Play (FP) models are assumed to have a
certain model of the situation and decide optimally on the basis of it. However, instead of assuming other
agents will play the same action they did previously, a FP agent assumes that each of the other agents
is playing a certain mixed strategy. The estimation of this mixed strategy is equal to the frequency with
which the counterpart has selected each of his available actions up until that moment. Thus, instead of
considering the actions taken by every other player only in the immediate past, FP agents implicitly take
into account the whole history of the game.

Rational learning: Kalai and Lehrer were pioneers in the study of rational learning [50]. This is the
most sophisticated model of learning in IL. Agents in this model are assumed to be fully aware of the
strategic context they are embedded in. They also have a set of subjective beliefs over the behavioral
strategies of the other players. Agents must assign a strictly positive probability to any strategy profile
that is coherent with the history of the game. This means that agents must be aware of all possible
actions made by other agents. Finally, players are assumed to respond optimally to their beliefs with the
objective of maximizing the flow of future payoffs.

2.4 Summary

This chapter shows that there was already a lot of research effort trying to explain the emergence of
cooperation using not only the Prisoner’s dilemma, but also PGGs under Social Learning. However, the
effects of Individual Learning on a PGG have not yet been explored. We propose using reinforcement
learning on a multi-agent system to study if the effects of Individual Learning are similar to those of
Social Learning. This proposal is detailed in the next chapter.

A summary and the “conceptual location” of this thesis, can be seen in figure 2.1.
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Figure 2.1: Related work and focus of this work
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Chapter 3

Model

After introducing the basic concepts and reviewing related work, it was decided to propose a new model
to study in what conditions cooperation can emerge. The proposal is a computer simulation of a Public
Goods Game (PGG) played by a large population, where each individual uses reinforcement learning in
an attempt to improve his payoffs. Individually, agents are selfish and rational. Considering this fact, it
will be interesting to see under what conditions cooperation can beat defection in the struggle to be a
stable strategy.
After studying the population dynamics of the PGG, a threshold was introduced similarly to what was
done by Pacheco et al. [37]. Then we studied how this game changes with the introduction of risk and
with structured populations. We can compare the results obtained with Individual Learning with those
of Social Learning to try to understand which mechanism fares better in helping cooperation, or which
mechanism represents a better model of real populations.

3.1 Public Goods Games with Thresholds

In a PGG, each individual may contribute a quantity to a pile. That pile is then multiplied by an enhance-
ment factor and distributed evenly by all the players in the group. Cooperation means contributing to
the pile and defection is just to receive the division of the pile, without contributing. The population is
divided into groups. In each round each of those groups plays a PGG. This means that in each round an
agent may play only once (if he is only in one group) or several times (if he takes part in multiple groups).
Groups are formed randomly and the payoff of an individual agent is the average of all the payoffs he
received in that round. This group sampling is explained in more detail in section 3.2. In this type of
model, it can make sense to introduce a threshold below which no public good is produced. Only when
the number of cooperators surpasses this threshold does the group produce any benefit. Consider the
way lionesses hunt in groups [2]. Two individuals are not enough for the cooperative hunt to be suc-
cessful. At least three individuals are required for the group to catch prey and then the more individuals
added, the more successful the group can be. This example of animal behavior could be modeled as a
PGG with a threshold of three individuals.
Formally, this PGG is defined by some variables:

• Each agent can be either a cooperator (C) or a defector (D) in each round. Players can change
strategy between rounds.

• The variable F is the enhancement factor.

• c is the cost each contributor pays to the group.
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Payoff obtained C D
1≤k<M −c 0

k≥M kFc
N
− c kFc

N

Table 3.1: Payoff values for the PGG for a group with k cooperators.

• The variable N is the size of the groups playing.

• The variable Z is the population size.

• The variable M represents the threshold. For games without threshold this simply means M = 1.

Therefore kFc
N represents the division of the pile. For a group with k cooperators the payoff matrix is

presented in table 3.1. It is worth noting that in any mixed group Cs are always worse off than Ds.
This leads us to the conclusion that, under traditional Game Theory, everybody ends up defecting, thus
foregoing the public good. Agents start with equal probability of choosing strategy C or D. Because
players’ internal state is modeled as the probability of playing C or D, it makes no sense to talk about the
number of cooperators and defectors as if an agent was bound to always play the same strategy. Instead
we measure the amount of cooperative actions in a round. However, to make terminology easier we will
refer to an agent who chose to cooperate in a round, simply as a cooperator. The goal is to measure the
evolution of the fraction of cooperative actions over time, taking into account the different values of the
other variables.

3.2 Group Sampling

The fitness of one agent can be measured by the average payoffs of all the games that agent played
in that round, following what was done in Social Learning [37]. Groups are formed by selecting N
agents randomly from the population of Z agents. This is called the random matching model. Agents
are selected randomly and they are not able to identify each other. This way we ensure that they are
not learning how to play against a specific individual. The population is well-mixed, which means that
all players are equally likely to be selected to participate in a specific group. With all these factors
taken into account, this random sampling leads to groups whose composition follows an hypergeometric
distribution1. The average fitness of Cs and Ds can be written, respectively, as

fC(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

(
k − 1

j

)(
Z − k

N − j − 1

)
ΠC(j + 1) (3.1)

and

fD(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

(
k

j

)(
Z − k − 1

N − j − 1

)
ΠD(j) (3.2)

where k represents the number of cooperators in the population, Z the population size and N the
group size. ΠC(j) and ΠD(j) are the payoff given to a C and a D, respectively, on a group with j
cooperators. This can be calculated using table 3.1. Why is this group sampling important? Informally,
we can look at it this way: a C has an higher chance of being in a group with an higher fraction of Cs
than if he were a D (because he is also taken into account when calculating the fraction of Cs on his
group). For Structured Populations the group sampling is done differently as we see next.

1The hypergeometric distribution is a discrete probability distribution that describes the probability of having a certain number
of successes after some draws, without replacement, from a finite population. Wherein each draw must have only two possible
states, it must be either a success or a failure.
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3.3 Structured Populations

Real populations are highly structured. Spatial structures or social networks make some individuals in-
teract more often than others. Recent advances in network theory [33, 34], show us that real-world pop-
ulations are organized in complex interaction structures, ranging from random-like graphs to scale-free
networks. Scale-free graphs [34], are of particular interest due to the fact that their degree distribution
follows a power law. This means that some vertices of the graph are highly connected (often called
“hubs”) while the vast majority of the vertices only have a small number of connections. An example of a
scale-free network is presented in figure 3.1A. In order to create a better model of the real world, we will
also study the effects of individual learning on a PGG played on a population structured in a scale-free
network.

Scale-free networks were created according to the Barabasi-Albert model of growth and preferential
attachment [34]. To create a scale-free network of average degree <ζ>we start from a small number of
nodes m0, and progressively add new nodes with degree m =<ζ>/2 = m0. For there to be preferen-
tial attachment the new node connects to an existing node i with probability pi = ζi/

∑
j ζj where ζi is

the degree of node i. This means that new nodes have a ”preference” to attach themselves to already
heavily linked nodes. By construction, the Barabasi-Albert model enforces a minimum group size of
<ζ>/2 + 1.

Group Sampling: Under an heterogeneous population like a scale-free network agents are no longer
equally likely to play against each other. Agents now only play with their neighbors. An agent with ζ

neighbors plays ζ + 1 PGGs, each with a given group size. One with all neighbors and then a game
for each of the neighbor’s neighbors. This group sampling is represented on figure 3.1B. The individual
fitness of the agent derives from the payoff accumulated from all games he partook in.

A B

Figure 3.1: (A) Example of a scale-free network. (B) Group sampling on a scale-free network: The cen-
tral individual (blue) participates in 6 groups, each with its own group size. These groups are represented
by the blue circles

3.4 Risk

On a PGG cooperators contribute a certain amount to a pile. That pile, if the threshold is reached, is
then multiplied by an enhancement factor and divided by all agents in the group. Up until now, failure to
reach that threshold meant the pile was not divided by the agents. With the introduction of risk (r ∈ [0, 1])
now the pile is still divided with probability 1 − r. This means that we can consider r = 1 for the PGG
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played under traditional conditions.

3.5 Reinforcement Learning

Now that we know what payoffs agents get, we need to model how agents will update their strategies
according to the payoffs they received. There are several ways to model reinforcement learning. Both
Roth-Erev learning [22] and Q-learning [48, 49] are so-called action value methods. They consist of
an update rule, an action selection rule, and an action value. The update rule determines how action
values are updated based on new experience. The action selection rule determines which action to take
next. The action value indicates the quality of taking one action relative to another. We will only focus on
Q-learning because the traditional way of implementing Roth-Erev learning does not allow for negative
action values (with the traditionally used selection rule). One could always change the selection rule to
allow negative action values (or even change the rules of the PGG so that there are no negative payoffs),
but on this work this will not be attempted. On section 5.2 we show that this is a possible way to enhance
our solution. Agents learn over time, updating their strategies and action values as the rounds of the
PGG progress. We can say, therefore, that agents are performing online learning, as opposed to batch
learning. With batch learning agents would first learn all there is to learn before playing the game, and
then play the PGG without learning anything new as the game progresses. This would require having a
large corpus of games already played for the agent to analyze and learn. This is not the case, and so
we employed online learning, where agents can learn as they play the PGG.

Single-state Q-learning: For this algorithm all initial action values are initialized to some value Q0 ∈ R.
Using small initial action values (relative to payoffs) speeds up learning in the beginning because it in-
creases the importance of those payoffs. However, if we wish to allow for greater exploration all we have
to do is use initial action values much greater than the payoffs an agent can receive. According to those
action values the action selection rule will select an action to take. Actions with higher values will have
more probability to be chosen than those with lower values. The action selection rule used is softmax
action selection. We will calculate the probability ps,a of selecting an action a with an action value qs,a
for current state s according to the Boltzmann distribution:

ps,a =
e(qs,a/τ)∑
a′ e

(qs,a′/τ)
(3.3)

Temperature τ controls the rate of exploration: much exploration at high temperature, little exploration
at low temperature. To let the behavior stabilize, the temperature τ can be decreased over time. After
taking action a and receiving payoff u the action values are updated as follows:

qs,a ←

qs,a + α(u− qs,a) If action a was taken,

qs,a otherwise.
(3.4)

where α ∈ [0, 1] is the learning rate. An higher learning rate puts more weight on more recent payoffs. If
the learning rate α = 0, nothing is ever learned; if it is α = 1, the action value of an action simply equals
the last payoff earned for that action.
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3.6 Initial Distribution of Agents

The simulations start with an even distribution of cooperators and defectors. This can be achieved by
simply creating all agents with the same action value for both strategies (cooperating and defecting).
This way we would ensure all agents start with the same probability of either cooperating or defecting.
However, we do not think this is a good model of the real world. Populations are not created with copies
of agents that all start under the same conditions. So we chose another strategy that also ensures
an even distribution of cooperators and defectors while maintaining a better degree of heterogeneity.
Instead of all players choosing to cooperate with probability pc = 0.5 we spread the agents’ probability
of cooperating across the full spectrum pc ∈]0, 1[. This means that some agents start with a probability
of cooperating pc = 0.1, others with pc = 0.2, and so on. Because this is an uniform distribution the
average probability of cooperating of the whole population is still pc = 0.5 . This was achieved by
changing the initial action values of the agents. Bear in mind this change made no difference on the
behavioral dynamics of the population. It simply provides a better model of the real world. It also makes
our results more robust by showing that it is not mandatory that agents start with equal probability of
cooperating or defecting.
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Chapter 4

Results

The results of the simulations conducted as explained in Chapter 3 are presented next.

4.1 Methods

In our model an agent is defined by its two action values (one for each behavior: cooperating or de-
fecting). These action values represent the quality of choosing one behavior over the other. Agents
play several rounds of a Public Goods Game (PGG) sequentially. In each round each agent chooses to
either cooperate or defect according to its action values. Then the groups are formed and their respec-
tive payoffs calculated. In the end of the round each agent receives a certain payoff associated with its
group and the behavior chosen and updates its action values accordingly. Then, for the next round, they
can choose to keep that behavior or change it. What we call a simulation is several of those rounds
played sequentially. Agents keep updating their action values in every round and play the PGG for 1500
rounds per simulation. We can run several simulations (these are separate entities, not sharing any
information between them) under the same conditions and then statistically analyze the results in order
to have more robust data. Each point in all graphs is an average of at least 20 simulations run under the
same conditions. For the scale-free networks 6 different networks were created and 100 simulations ran
in each one. When the deviation between simulations was negligible it was, therefore, not shown.

First we observed the impact of changing the parameters of the Q-learning algorithm. Several simu-
lations were ran where for each simulation all agents had the same learning rate. We started with the
learning rate α = 0.1 and went up to α = 0.9 with all other parameters unchanged. Changing the learn-
ing rate made no difference on the amount of cooperative fraction of the population after the population
had stabilized. Changing the way the temperature τ of the action selection rule decreases only changes
the amount of rounds needed for the agents to stabilize. After several simulations it was decided to
decrease this temperature τ as such:

τ(i) = min{τ, τ log(i/3)/(i/3)} (4.1)

Where τ(i) is the temperature used at the ith round and τ is a value determined by us which only needs
to be high enough to make sure there is enough exploration in those first rounds. This way the agents
start to stabilize at around the 600th round which gives plenty of time to explore what is the best behavior.
The cost which agents pay to cooperate is fixed c = 1 on all subsequent graphs.
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4.2 Influence of Group Sampling in well-mixed Populations

A set of simulations were run to see what is the effect of the stochastic processes inherent to finite
populations. The simulations were run with a population of 200 agents (Z = 200) , group size is fixed
at 5 (N = 5) and there is no threshold (M = 1). The results are shown in figure 4.1. Each point
represents the average fraction of cooperators (after the population stabilized) for 20 simulations for a
certain Fc/N . The whiskers represent the deviation of values between those 20 simulations. Each
simulation was run for 1500 rounds. The fraction of cooperators was measured by taking the average
of the last 500 rounds. The deviation of values in those 500 rounds, although it was not 0 (given the
stochastic nature of the simulation), was minimal, meaning the population had stabilized. The red circles
represent simulations where each agent participated in one and only one group. The blue squares
and yellow rhombus represent simulations where each agent participated in at least 40 groups and
80 groups, respectively. There were other number of groups tested but those results were omitted to
improve readability. For each agent on each round, the payoff received was the average of the payoffs of
all the groups he participated. This way, the stochastic effects of finite populations were dampened. As
we can see, those stochastic processes play a detrimental role for cooperation when Fc/N > 1. They
also introduce more deviation between simulations. Given our goal of promoting cooperation, from now
on every simulation will be run with the formation of several groups per individual. On all subsequent
graphs, every agent partakes in at least 80 groups. This number was chosen because it is high enough
to approach the asymptotic limit but still manageable in terms of simulation run time. Also, as said on
section 4.1, each point in all graphs is an average of 20 simulations run under the same conditions.
When the deviation between simulations was negligible it was, therefore, not shown.

Figure 4.1: Fraction of cooperative actions ρ for each value Fc/N .
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4.3 Public Goods Game

Next, we studied under which circumstances cooperating was an advantageous behavior over defect-
ing. This can be accomplished by studying the average difference in fitness between cooperators and
defectors. We multiply that difference by the fraction of cooperative actions (ρ) and defective actions
(1 − ρ) to allow an easier comparison with social learning (as explained in more detail on section 1.3).
This way we end up with the following formula for the learning gradient:

LG(ρ) = ρ(1− ρ)(fC − fD) (4.2)

Where fC and fD is the average fitness (payoffs) of agents that chose to cooperate and defect in that
round, respectively. This learning gradient characterizes the behavioral dynamics of the population.
Whenever the gradient is positive (LG(ρ) > 0) it means that a cooperative action is providing more
payoff than a defective action, which means that cooperation is more likely to be reinforced by individual
learning. Inversely, if the learning gradient is negative (LG(ρ) < 0) it means that defection is more likely
to be reinforced. This time the population consisted of 10000 agents. When dealing with the learning
gradient we need to calculate the difference of payoffs between Cs and Ds. Because of this we use more
agents to make sure the curves are as accurate and as smooth as possible. The group size was again
fixed at 5 (N = 5) and there was no threshold (M = 1). Several multiplication factors were chosen and
the learning gradient was observed for each. The results, presented in figure 4.2, show that, similarly to
what was found analytically and with social learning [37], on a PGG without thresholds cooperation
is advantageous only when Fc/N > 1Fc/N > 1Fc/N > 1.

L
G
(
)

Figure 4.2: Learning gradient LG(ρ) for several values Fc/N .
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4.4 Introduction of a Threshold

The introduction of a threshold makes the population dynamics more complex as seen in figure 4.3.
Here the simulation parameters were similar to those of figure 4.1 except for the group size and the
introduction of the threshold. Here group size is N = 10 . Now cooperation can be advantageous even
for Fc/N < 1.

Figure 4.3: Fraction of cooperative actions ρ for each value Fc/N under different Thresholds.

An interesting point appears in figure 4.3. For Fc/N = 0.8 we can see that there is an high devia-
tion in the value of the fraction of cooperation for threshold M = 7. What could explain this? A look
at the learning gradient might provide an answer. This is presented in figure 4.4. As we can see, the
introduction of a threshold changes the shape of the learning gradient from a simple parabola to a more
complex curve. For each curve the learning gradient is zero LG(ρ) = 0 in two points. The one to the
left is an unstable fixed point and the one to the right is a stable fixed point. On all simulations, initially,
the population is evenly divided between agents that choose to defect or cooperate. Figure 4.4 shows
that for threshold M = 7 and a fraction of cooperative actions ρ = 0.5 the learning gradient is 0. This
is the unstable fixed point. For this reason, depending on whether the random nature of the game fa-
vors cooperators or defectors, the population can either enter a state of full defection or a state where
the fraction of cooperators is around ρ = 0.85. The latter point is the stable fixed point. For ρ = 0.85

and M = 7 any deviation in the composition of the population produced by the stochastic processes is
negated after some rounds and the population remains with the same fraction of cooperators. Given
our goal of promoting cooperative deeds, the more to the right the stable fixed point is, the bet-
ter for cooperation. The unstable fixed point explains the high deviation present in figure 4.3 for point
Fc/N = 0.8 and M = 7. All other thresholds also have a point where this high deviation exists. However,
due to the coarseness of the simulations ran they were not visible in figure 4.3. The nature of these fixed
points leads us to the following conclusion: as long as there are enough cooperative actions in the
population to surpass the unstable fixed point of the threshold, its existence is advantageous for
cooperation. This results are, once again, similar to what was found under social learning [37].
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Figure 4.4: Learning gradient LG(ρ) under different thresholds for Fc/N = 0.8. The open circle repre-
sents the unstable fixed point and the filled circle represents the stable fixed point. The arrows indicate
the direction in which the amount of cooperative actions will tend to move for threshold M = 7.

Two more graphs with the learning gradient are shown in figure 4.5. As we can see, the shape of
the curves is similar. The only major difference between the graphs is a translation on the y-axis.
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Figure 4.5: Learning gradient LG(ρ) under different thresholds (M). On the graph to the left FcN = 2
3 and

on the graph to the right FcN = 1 .

4.5 Group Sizes

So far the group size was always much smaller than the population size (N ≤ 10 and Z ≥ 200). What
happens if we increase the group size to levels close to those of the population size? As with social
learning [14, 37], once the group size spans nearly the entire population we can observe the “spite”
effect [38], which is detrimental for cooperation. This is shown in figure 4.6. The simulations were run
with a population of 500 agents (Z = 500). The enhancement factor was Fc/N = 0.8. For figure 4.6A
the threshold was constant at M = 3 and for figure 4.6B the threshold increases linearly with the group
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Figure 4.6: Learning Gradient LG(ρ) for several group sizes (N ). (A) Threshold is constant M = 3. (B)
Threshold increases linearly with group size M = 0.3N .

size (M = 0.3N ). Cooperation is maximized when groups are small. This is valid both when the
threshold was constant or increased linearly with the group size (however with the latter, to a lesser
extent).

4.6 Risk

Following what was said about risk (section 3.4) figure 4.7 shows the results of introducing risk in the
PGG. Group size N = 10 and threshold M = 5 . Once again, by analyzing the stable fixed point in
figure 4.7B (the rightmost point where LG(ρ) = 0) we can see that as risk gets higher so does the
fraction of cooperators present in the population. The results present in figure 4.6 and 4.7 further
reinstate the findings of Santos and Pacheco [14]: ”When applied to the problem of climate control,
the present results suggest that decentralized agreements between smaller groups (small N), possibly
focused on region-specific issues where risk is high and goal achievement involves tough requirements
(large relative M), may be preferable to world summits, because they effectively raise the probability of
reaching an overall cooperative state.”
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Figure 4.7: Risk on a PGG: (A) Fraction of cooperative actions ρ under several values of Fc/N (B)
Learning gradient LG(ρ) with risk for Fc/N = 0.8.
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4.7 Structured Populations

With all the previous results, we can have a good understanding of the behavioral dynamics of the PGG
played by an unstructured well-mixed population. But how will the network structure affect the behavioral
dynamics of the population? Figure 4.8 shows the changes on the learning gradient with structured
populations. The dashed line represents the well-mixed population (as we were using previously) and
acts as a baseline. The blue and yellow curves represent the structured population (scale-free). The
conditions of the simulations under the well-mixed and structured populations were equivalent:

• Population size Z = 1000 agents

• Group size N = 7 for well-mixed population. Each agent participates in 7 groups per round instead
of 80 as was being used before. The scale-free networks were created with an average degree
ζ = 6 which means the average group size is <N>= 7 = <ζ>+1. It also means that, on average,
each agent will participate in 7 groups per round.

• The threshold is constantM = 3 for the well-mixed population and for the blue curve. For the yellow
curve the threshold increases linearly with the group size M = 3N/7. The choice ofM = 3N/7

ensures that the average value ofM is the same for both curves.

• Enhancement factor is Fc/N = 0.9 for figure 4.8A and Fc/N = 0.8 for figure 4.8B.

A B

L
G
(
)

Figure 4.8: Learning gradient LG(ρ) for an homogeneous (well-mixed) population (dashed curve) and
heterogeneous (scale-free) networks (solid curves) under (A) Fc/N = 0.9 and (B) Fc/N = 0.8

Looking at figure 4.8A, we can observe that cooperators take advantage of such an heterogeneous
network. The stable fixed point (the rightmost point where LG(ρ) = 0) is higher in both structured popu-
lations as compared with the well-mixed one. This is especially true for the structured population where
the threshold is fixed. However, we can also observe that even though the stable fixed point is higher for
the blue curve, its intensity is much smaller. This means that this type of structure with a fixed threshold
is only advantageous under stricter circumstances than its variable threshold counterpart. This is ob-
servable on figure 4.8B where all the variables are the same as in figure 4.8A with the exception of the
enhancement factor which is now set at Fc/N = 0.8. As we can see, the structured network with vari-
able threshold (yellow curve) is still advantageous over the well-mixed network (dashed orange curve).
However, the learning gradient for the structured network with a fixed threshold (blue curve) is always
negative in this case, meaning that cooperators are worse off than with the well-mixed structure.

Looking at the learning gradient gives us some predictions about the behavior of the agents. However,
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Figure 4.9: Fraction of cooperative actions ρ under several values of Fc/N

there is nothing like observing the real behavior of the simulations. This is shown in figure 4.9 where
we can see the final fraction of cooperative actions for several values of Fc/N . The results present in
figure 4.9 further confirm that cooperators can take advantage of scale-free networks. The scale-free
network with variable threshold provided a better environment for the emergence of cooperation except
for values of Fc/N > 1.3

The learning gradient and the fraction of cooperative deeds observed: By now, you might have
noticed that sometimes the fraction of cooperative actions observed falls a bit short of the corresponding
stable fixed point anticipated by the learning gradient. This happens for several reasons:

• Agents calculate the probability of cooperating by measuring the difference in their action values.
The bigger the difference the more probability they have of selecting that action. This means that
the intensity of the learning gradient is important. We can change how important it is by tweaking
the values of the learning rate of agents and the temperature in the action selection rule. This
is why, for example, the stable fixed point foreseen by the learning gradient for Fc/N = 0.8 in
figure 4.8 for the curve with fixed threshold does not match the fraction of cooperative actions in
figure 4.9. Because the learning gradient has so little intensity it is not enough to surpass the
stochastic nature of the model.

• Agents stabilize after some time. If by that time the agents have not reached the stable fixed point
they will not reach the anticipated fraction of cooperative actions. Once again this can be changed
by tweaking the learning rate of agents and temperature of the action selection rule.

In short, the learning gradient can tell us what is the approachable limit of the stable fraction of
cooperative actions. But depending on other parameters the real fraction observed can sometimes be
smaller than expected. This is especially true for structured populations, where the stochastic processes

26



inherent to our simulations play a bigger role.

We now know cooperators can take advantage of scale-free networks. But why is this type of heteroge-
neous network promoting cooperation? We can look at the behavioral dynamics of the population to try
to find an answer. On figure 4.10 we represent the inner state of the agents playing the PGG. On the
y-axis we represent time. On the top we have the first round of the PGG and on the bottom the 700th
round. When agents are playing the PGG they decide to cooperate with a certain probability. For exam-
ple, based on its action values an agent might decide that he will cooperate with probability pC = 0.7.
This does not mean that it will cooperate for sure in that round, only that there is a probability pC = 0.7

of it cooperating. On the x-axis we represent this probability of an agent choosing to cooperate. The first
square represents agents who want to cooperate with a probability pC ∈ [0.0; 0.1[. The second square
represents agents who want to cooperate with a probability pC ∈ [0.1; 0.2[ and so on. In short, if an
agent is more to the left it is more of a defector. If an agent is more to the right it is more of a cooperator.
The color of the squares represent how many agents fall in that probability of cooperating. A darker
color means that lots of agents are choosing to cooperate within that probability space. Figure 4.10 is
composed of four graphs. The one to the left represents the well-mixed population and acts as a base-

Population Hubs Leaves

More Agents

Fewer Agents

Well-mixed

Figure 4.10: Behavioral dynamics on a structured network. The y-axis represents time flowing down-
wards. The x-axis represents the quantity of agents that chose to cooperate under a certain probability.
The more to the left, the more an agent wants to defect. The more to the right, the more an agent wants
to cooperate. A darker color represents more agents on the same probability space.
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line. The other three represent the scale-free network. The one to the left represents the behavioral
dynamics of the whole population on the scale-free network. The middle one represents the behavioral
dynamics of the hubs, which are the agents that are heavily connected to other agents. The right one
represents the behavioral dynamics of the remaining nodes, which we called “leaves”. We are using the
same simulation conditions to those used on figure 4.8 with Fc/N = 0.9 and a fixed threshold. An aver-
age of the results of 10 simulations were used to produce these results. We considered hubs all nodes
with more than 24 neighbors. This is 4 times as high as the average degree of the network used (ζ = 6).
As we can see, figure 4.10 shows that hubs mainly cooperate with a probability pc ∈ [0.5; 0.9]. On
the other hand, leaves tend to either fully defect, taking advantage of cooperators, or fully cooperating.
It seems that hubs behave “fairer” than leafs, even though the reasons why do not seem clear at the time.

It is worth noting that the stable fraction of cooperative actions is the same in both the well-mixed and
structured populations, as can be seen in figure 4.9 for point Fc/N = 0.9. Even though the fraction of
cooperative actions is the same, we see that the behavioral dynamics are indeed different. The popula-
tions organized in different ways, but ended up with the same results, in this case. Figure 4.11 shows a
more detailed view of the behavioral dynamics as seen on figure 4.10 from round 500 to 700.

Hubs Leaves

More Agents

Fewer Agents

Well-mixed

Figure 4.11: Behavioral dynamics on a structured network. This figure represents a more detailed view
of the behavioral dynamics as seen on figure 4.10 but only from the 500th to the 700th round.
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Chapter 5

Conclusion

In this work we presented individual learning as another tool to study the emergence of cooperation.
The main question we aimed to answer was ”Will cooperation emerge in a population where agents are
trying to learn which behavior leads to the best possible outcome, based on their own experience?”. We
mainly focused on computational simulations of agents using reinforcement learning playing a Public
Goods Game (PGG). These simulations gave us a good insight of how selfish, rational agents behave
when presented with the choice of incurring a cost to themselves to give a benefit to another agent. As
conflicting as these ideas may seem, it was shown that selfish agents can still choose to cooper-
ate, under certain circumstances. All paradigmatic scenarios analyzed produced similar conclusions
to those found under social learning. However, several other scenarios remain to be studied, which can
produce different results. A more thorough analysis of future work is presented in section 5.2.

5.1 Summary of Contributions

Proposal of new model: There has been a lot of research effort trying to explain the emergence of
cooperation using social learning. In this work we tackled the problem in a different fashion: what would
happen if agents were actually trying to learn by themselves, instead of imitating each other’s behavior?
In this thesis we propose a model where agents play a PGG while using reinforcement learning in an
attempt to maximize their payoffs.

The influence of group sampling: The agents form groups from the population to play the PGG.
The more groups an agent partakes in, the better for cooperation. Participating in more groups damp-
ened the negative stochastic effects of finite populations. It also improved the final payoffs of the agents
that chose to cooperate as compared to those who did not.

Introduction of a Threshold: By introducing a threshold in the PGG this game no longer has a lin-
ear return. Now if a group fails to meet that threshold, all agents of that group receive no payoff. This
provides a further incentive to cooperate. The higher the threshold the more cooperators stand to gain,
as long as there are enough cooperators in the population to surpass the unstable fixed point.

Group sizes: Cooperation is maximized when the groups playing the PGG are much smaller than
the whole population.

Introduction of Risk: If we introduce risk in the PGG (on failure to reach the threshold, agents still
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receive the payoff with probability 1− r). Using our model it was shown that the higher the risk the more
agents are willing to cooperate.

Structured Populations: Real populations are highly structured. Instead of agents interacting equally
likely to each other, a structured population network was introduced. It was shown that cooperators take
advantage of the heterogeneous nature of the scale-free network to a great extent.

All results obtained with individual learning further reinstate the findings made with social learning. It
seems that these two mechanisms are alike, although they work at different levels of organization.

5.2 Future Work

It is hard to say that a work is complete. There are several possible paths to enhance the present solu-
tion, and some are presented next.

More learning algorithms: We only used Q-learning in our model. For the results present here to
be more robust it would be important to have other learning algorithms produce similar results. One
could use, for example, Roth-Erev learning [22] and see how those agents fared compared to those
using Q-learning.

Experimental Validation: It would be interesting to try to mimic the experimental results of Milinski
et al. [27] with reinforcement learning. If the experimental results using real people were the same as
with agents using reinforcement learning we could make the case that maybe humans behave like self-
ish, rational agents. This could provide some insight into our own human nature.

Impact of Networks: We studied briefly the impact of scale-free networks on the behavioral dynamics.
We saw that hubs tend to mainly want to cooperate while the other nodes fall to either side of the spec-
trum. But a more thorough analysis can follow. What made hubs behave so differently than the other
nodes? Do these hubs favor or deter cooperation for the neighbors?

Individual learning and Social Learning: Even though individual learning produced similar results
to those of social learning, it is not clear what would be the results of both learning processes employed
simultaneously. This approach could provide a more accurate model of human behavior.
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